Алгоритм расчета содержания озона в атмосфере по уходящему излучению Земли

С. А. Шишигин

Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук, Томск E-mail: ssa@iao.ru

Введение

Основным методом измерения с земной поверхности общего содержания озона в атмосфере является квазимонохроматический метод в спектральном участке 290-370 нм. Погрешность спектрофотометра Добсона и озонометра М-83 может достигать 10 % и более [1].

Информацию о содержании озона в атмосфере получают также на основе существующих методик восстановления атмосферного озона по данным измерений уходящего инфракрасного излучения из атмосферы спутниковыми радиометрами.

Существующие методики восстановления атмосферного озона по данным измерений современных ИК-зондировщиков показывают, что при определении общего содержания озона достигается точность порядка 3-10% в зависимости от широты, сезона, состояния атмосферы. Основные трудности и ограничения детектирования озона по результатам измерений спутниковых ИК- зондировщиков связаны с влиянием вариации температуры подстилающей поверхности и вертикального профиля атмосферы, наличию аэрозольных слоёв в поле зрения радиометра и его спектральным разрешением регистрации уходящего излучения Земли [2, 3].

Разрешение спутниковых приборов для надирного зондирования (AIRS, IASI, IMG, TANSO-FTS, ИКФС-2) лежат в приделах ~ 0.2-0.6 см⁻¹. Повышение точности контроля состояния озонового слоя требует развития и совершенствование физико-математических моделей атмосферы и алгоритмов обработки дистанционных измерений [4].

Корреляционный радиометр по сравнению с другими приборами газоанализа имеет сверхвысокое спектральное разрешение регистрируемого излучения из-за использования фильтра в виде кюветы с исследуемым газом [5]. Устраняется в регистрируемом сигнале радиометра неселективное взаимодействие излучения со средой [6]. Обработка сигналов регистрации уходящего излучения в единичных спектральных участках радиометрами осложняется неоднородностью атмосферы.

В статье рассмотрена методика корректировки температуры подстилающей поверхности Земли и состояния озонового слоя в безоблачной атмосфере. Проведены модельные расчёты содержания озона в воздухе с помощью варьирования эффективной температуры всей толщи атмосферы.

Выбор спектрального диапазона излучения для регистрации радиометром

В участке спектра 990-1025 см⁻¹ полосы поглощения O₃ наблюдается минимальное присутствие линий поглощения только молекул H₂O и CO₂, слабо влияющих на ослабление уходящего излучения Земли. Рассматривается возможность определения общего содержания озона по уходящему излучению атмосферы одновременно в двух спектральных участках с противоположной зависимостью коэффициента поглощения излучения исследуемого газа от изменения его температуры.

Рис. 1. Зависимость средних значений коэффициента поглощения озона от температуры.

На рисунке 1 приведены зависимости средних значений молекулярных коэффициентов поглощения озона в спектральных участках 1020-1021см⁻¹ (верхняя линия) и 1002-1003 см⁻¹ (нижняя линия) при давлениях 1 и 0.03 атм от температуры. Изменение среднего значения молекулярного коэффициента поглощения озона пропорционально изменению температуры:

$$\Delta \mu \approx \mu \cdot (Q_2 - Q_1) = \mu \cdot \Delta Q \tag{1}$$

Основные соотношения для расчета содержания озона в атмосфере

Уходящее излучение атмосферы S в дальнем инфракрасном участке Δv для неоднородной атмосферы представим в виде суммы светимостей поверхности Земли и усреднённых по спектру (треугольные скобки) горизонтальных однородных слоёв:

$$\langle S \rangle = \Delta v \cdot \left[\left(P_e(v, Q_e) \cdot \left\langle \prod_{k=1}^n T_k(v, Q_k) \right\rangle + \sum_{k=1}^n B_k(v, Q_k) \cdot \left\langle \left(1 - T_k(v, Q_k) \right) \cdot \prod_{i=k+1}^n T_i(v, Q_k) \right\rangle \right]$$
(2)

где P_3 - светимость поверхности земли, B - среднее значение светимости абсолютно черного тела в спектральном участке ΔV . T_k - спектральная плотность пропускания излучения к элементарным слоем атмосферы в участке ΔV . Солнечной радиацией в дальней инфракрасной области спектра пренебрегаем. Аэрозольное ослабление излучения в дальней ИК области спектра для слабо замутнённой атмосферы незначительно и его не учитываем.

Количество однородных слоёв можно значительно уменьшить последовательным объединением двух соседних слоёв в один при условии, что вклад в мощность уходящего излучения атмосферы в исследуемом спектральном участке равен вкладам в мощность уходящего излучения Земли неоднородными слоями, их составляющими [7].

Рассмотрена модель атмосферы в виде последовательности однородных 100 метровых слоёв до высоты 40 километров. Параметры слоёв приведены в таблице 1.

Спектральное разрешение составляло 0.001 см⁻¹ при расчётах коэффициентов поглощения, функции пропускания ИК излучения атмосферными слоями.

Используемая модель атмосферы преобразована в виде одного эффективного однородного слоя 1-40 км., а также последовательностью эффективных однородных слоёв 1-15 км., 16-17 км., 18-19 км., 20-21 км., 22-23 км., 24-25 км., 26-27 км., 28-29 км., 30-31 км., 32-33 км., 34-35 км., 36-40 км., без изменения мощности уходящего излучения атмосферы спектрального участка (1002-1003 см⁻¹) и (1020-1021 см⁻¹).

Н	T⁰K	Р	02	N_2	CH_4	CO ₂	CO	N_2O	O ₃	H ₂ O	N см⁻ ³
км		атм	%	%	$10^{-4}\%$	$10^{-4}\%$	$10^{-4}\%$	10 ⁻⁴ %	10 ⁻⁴ %	$10^{-4}\%$	10 ⁻¹⁹
			, -	, -	/-	/-	/-	/-			
0	288	1	21	78	1.6	370	0.250	0.420	0.027	7730	2.550
1	282	0.891	21	78	1.6	370	0.250	0.400	0.026	6800	2.300
2	275	0.787	21	78	1.6	370	0.250	0.400	0.024	5000	2.100
3	269	0.694	21	78	1.6	370	0.250	0.400	0.024	3700	1.900
4	263	0.611	21	78	1.6	370	0.250	0.400	0.027	2600	1.700
5	256	0.535	21	78	1.6	370	0.250	0.400	0.027	1800	1.530
6	249	0.467	21	78	1.6	370	0.200	0.400	0.029	1000	1.370
7	243	0.407	21	78	1.6	370	0.180	0.400	0.033	500	1.230
8	236	0.353	21	78	1.6	370	0.150	0.400	0.041	240	1.100
9	230	0.305	21	78	1.6	370	0.120	0.400	0.052	50	0.970
10	223	0.262	21	78	1.5	370	0.100	0.400	0.070	10	0.860
12	217	0.192	21	78	1.45	370	0.080	0.400	0.123	8	0.650
14	217	0.141	21	78	1.40	370	0.060	0.400	0.213	7	0.470
16	217	0.103	21	78	1.32	370	0.050	0.400	0.857	6	0.350
18	217	0.075	21	78	1.25	370	0.008	0.400	2	4.50	0.250
20	217	0.055	21	78	1.20	370	0.005	0.400	3.333	4.00	0.180
22	219	0.040	21	78	1.10	370	0.005	0.350	4.286	4.20	0.140
24	221	0.029	21	78	1.00	370	0.005	0.300	5	4.40	0.100
26	223	0.022	21	78	0.90	370	0.005	0.200	5.714	4.50	0.070
28	225	0.016	21	78	0.80	370	0.005	0.150	6	4.60	0.050
30	227	0.012	21	78	0.70	370	0.005	0.100	4.444	4.70	0.045
32	229	0.009	21	78	0.65	370	0.007	0.080	3.750	4.80	0.040
34	235	0.008	21	78	0.60	370	0.008	0.070	3.714	5.00	0.035
36	245	0.007	21	78	0.58	370	0.010	0.060	3.333	6.00	0.030
38	255	0.006	21	78	0.53	370	0.020	0.050	2.917	6.50	0.024
40	265	0.003	21	78	0.50	370	0.030	0.040	3.333	7.00	0.012

Таблица 1. Параметры модели атмосферы

Мощности уходящего излучения в узких спектральных участках Δv_1 , Δv_2 для их соответствующих эффективных температур Q_{v1} и Q_{v2} однородного слоя атмосферы представим в виде:

$$\begin{cases} S_{1M} = \Delta v_1 \cdot \left[P_1(Q_1) \cdot T_1(Q_1) + (1 - T_1(Q_1)) \cdot B(Q_1) \right] \\ S_{2M} = \Delta v_2 \cdot \left[P_{32}(Q_3) \cdot T_2(Q_{22}) + (1 - T_2(Q_{22})) \cdot B_2(Q_{22}) \right] \end{cases}$$
(3)

Средние значения функции пропускания T_1 , T_2 однородного слоя с концентрацией озона *n* и толщиной *L* в спектральных участках частот Δv_1 , Δv_2 , от изменения эффективных температур данного слоя равны:

$$\begin{bmatrix}
T_1 = \exp((-\Delta \mu) \cdot n \cdot L) = T_1 \cdot \exp(\tau_1 \cdot \Delta Q) \\
T_2 = \exp((-\mu_2 - \Delta \mu_2) \cdot n \cdot L) = T_2 \cdot \exp(\tau_2 \cdot \Delta Q)
\end{bmatrix}$$
⁽⁴⁾

Зависимость мощности уходящего излучения от температуры воздуха и температуры поверхности Земли в рассматриваемой модели атмосферы можно записать в виде:

$$\begin{aligned} \left| S_{M^{2}} = \Delta V_{1} \cdot (P_{1}(Q) \cdot T_{1} \cdot \exp(\tau_{1} \cdot K_{1} \cdot \Delta Q) + (1 - T_{1} \cdot \exp(\tau_{1} \cdot K_{1} \cdot \Delta Q)) \cdot B(Q + K_{1} \cdot \Delta Q)) \\ \left| S_{M^{2}}^{M} = \Delta V_{2} \cdot (P_{32}(Q) \cdot T_{2} \cdot \exp(\tau_{2} \cdot K_{1} \cdot \Delta Q)) + (1 - T_{2} \cdot \exp(\tau_{2} \cdot K_{1} \cdot \Delta Q)) \cdot B_{2}(Q + K_{1} \cdot \Delta Q)) \\ \Gamma_{AB} \tau_{1} = \frac{1}{\Delta Q} \cdot L \left| \frac{1}{\Delta V_{1}} \cdot S_{M} - B(Q + \Delta Q)}{T_{1} \cdot (P_{31}(Q) - B(Q + \Delta Q))} \right|, \tau_{2} = \frac{1}{\Delta Q} \cdot L \left| \frac{1}{\Delta V_{2}} \cdot S_{M^{2}} - B_{2}(Q + \Delta Q)}{T_{2} \cdot (P_{32}(Q) - B_{2}(Q + \Delta Q))} \right| \end{aligned}$$
(6)

 K_1 дополнительный коэффициент, позволяющий варьировать эффективные температуры слоя для рассматриваемых спектральных участков. $K_1=1$ при определении ΔQ_1 , ΔQ_2 из расчётов уходящего излучения в каждом выбранном спектральном участке со стандартным вертикальным профилем температуры атмосферы (таблица 1) и с профилем уменьшенном на 2 градуса в каждом 100 метровом слое.

Изменение концентрации озона *n* в слое атмосферы на $\Delta n << n$ приводит к изменению пропускания слоя в δT раз и может быть записано в виде $\delta T = \ell^{-\mu\Delta n L} \approx 1 - \mu \cdot \Delta n \cdot L = 1 - \mu \cdot \Delta N$.

Изменение мощности уходящего излучения в спектральных участках Δv_1 , Δv_2 равно:

$$\begin{aligned} \left| \Delta S_{_{\mathcal{M}}} = \langle S_{_{\mathcal{M}}} \rangle - \langle S_{_{\mathcal{N}\Delta n}} \rangle \approx (P_{_{\mathcal{H}}} - B_{_{1}}) \cdot T_{_{1}} \cdot \mu_{_{1}} \cdot \Delta N \cdot \Delta \nu_{_{1}} \\ \left| \Delta S_{_{\mathcal{M}2}} = \langle S_{_{\mathcal{M}2}} \rangle - \langle S_{_{\mathcal{V}2\Delta n}} \rangle \approx (P_{_{\mathcal{H}2}} - B_{_{2}}) \cdot T_{_{2}} \cdot \mu_{_{2}} \cdot \Delta N \cdot \Delta \nu_{_{2}} \end{aligned} \right. \tag{7}$$

Где $\langle S_{\nu_1 \Delta n} \rangle_{,} \langle S_{\nu_2 \Delta n} \rangle$ усреднённая по спектру светимость атмосферы в участке $\Delta v_1, \Delta v_2$ при изменении концентрации газа в слое атмосферы на Δn .

Чувствительность величины мощности уходящего излучения к содержанию исследуемого газа в слое равна соответственно;

$$\begin{cases} C = \Delta S / \Delta N \\ C_2 = \Delta S^{*}_{M2} / \Delta N \end{cases}$$
(8)

 ΔS_{1M} , ΔS_{2M} изменение мощности уходящего излучения в исследуемых участках спектра полосы поглощения озона при увеличении содержания озона в эффективном модельном слое атмосферы на ΔN . Отличие содержания исследуемого газа в слое от модельного при мощности прошедшего слой излучения S_1 (1002-1003 см⁻¹), S_2 (1020-1021 см⁻¹), определяется из соотношений:

$$\begin{cases} \Delta N_1 = \Delta S_1 / C_1 = (S_1 - S_1) / C \\ \Delta N_2 = \Delta S_2 / C_2 = (S_{M2}^4 - S_2) / C_2 \end{cases}$$
⁽⁹⁾

При решении обратной задачи излучательную способность подстилающей поверхности используют результаты моделирования поверхности (Успенский и др. 2021).

В дополнение к существующим физическим или статистическим алгоритмам «обращения» данных атмосферных зондировщиков [2] рассматривается возможность определения эффективной температуры подстилающей поверхности Земли и уменьшения влияния неточности задания вертикального профиля температуры атмосферы при определении общего содержания озона.

Последовательность шагов при реализации предложенной методики оценки содержания озона в атмосфере состоит в выборе двух спектральных участков полосы поглощения озона с противоположной зависимостью коэффициентов поглощения излучения.

Представление выбранной модели атмосферы в виде однородного эффективного слоя для каждого спектрального участка с соответствующими параметрами среднего коэффициента пропускания, эффективной температуры данного слоя.

Рассчитываются мощности уходящего излучения Земли для рассматриваемой модели атмосферы при двух значениях содержания озона в воздухе и двух близких профилях температуры атмосферы и определяются коэффициенты C₁, C₂ (8), а также τ₁, τ₂ (6).

Используя экспериментально регистрируемые мощности уходящего излучения Земли в выбранных спектральных участках в безоблачной атмосфере, рассчитываются массивы возможных отличий содержания озона в воздухе от используемой модели ΔN_1 , ΔN_2 (9) при изменении эффективной температуры слоя атмосферы с помощью коэффициента K_1 (5) и вариаций температуры подстилающей поверхности, из которых определяется минимальная разность $|\Delta N_1 - \Delta N_2|$. Температуры подстилающей поверхности и однородного слоя атмосферы при данном условие соответствуют эффективной температуре Земли, температуре эффективного слоя.

Рис.2. Зависимость рассчитанных отклонений содержания озона по уходящему излучению в спектральных участках 1002-1003 см⁻¹ (1), 1020-1021 см⁻¹ (2) в атмосфере от модельного при их минимальной разницы и температурах поверхности Земли в алгоритме расчёта 289 К (а), 290 К (в), 291 К (с).

Определяется взаимосвязь коэффициентов калибровки C₁, C₂ в зависимости от возможных сценариев отклонения от модели содержания озона только в нижних или верхних слоях атмосферы.

Используя значения эффективных температур слоя всей атмосферы и поверхности Земли, полученных ранее, рассчитываются массивы возможных отличие содержания озона в воздухе от используемой модели ΔN_1 , ΔN_2 (9) во всем диапазоне изменений C₁, C₂.

Общее содержание озона в атмосфере N_a определяется из соотношения $N_a = N_M + (\Delta N_I + \Delta N_2)/2$ при минимальная разность $|\Delta N_I - \Delta N_2|$, наблюдаемой при всех изменениях C_1 , C_2 . N_M - количество молекул озона в столбе воздуха модели атмосферы.

Определение эффективной температуры подстилающей поверхности

Контроль количества озона в сложном эффективном слое атмосферы рассматривается в двух спектральных участках с коэффициентами калибровки (8), при $\Delta N = \Delta N_o [cm^{-2}]$ равной добавкам 1% озона в каждом 100 метровом слое атмосферы. $N_o = 9,09*10^{-18}$ см⁻² - количество молекул озона в столбе воздуха до высоты 40 километров в модели атмосферы.

Рассчитаны эталонные мощности уходящего излучения S_{91} (1002-1003см⁻¹), S_{92} (1020-1021 см⁻¹) от поверхности Земли при температуре 290 К и суммарного излучения всех 100 метровых слоёв модели атмосферы с 1% добавками. Для эталонных мощностей уходящего излучения S_{91} , S_{92} получены зависимости отклонения содержания озона от содержания его в используемой модели атмосферы ΔN_1 , ΔN_2 , разницы $|\Delta N_1 - \Delta N_2|$ при изменении её эффективной температуры коэффициентом K_1 (с шагом 0.001) и температуры поверхности Земли Q_3 используя соотношение (9).

На рисунке 2 приведены результаты модельных расчётов отклонения содержания озона в воздухе от используемой модели по уходящему излучению $S \Rightarrow 1 = 7,27 \times 10^{-6}$ BT/cm*cp , $S \Rightarrow 2 = 4,97 \times 10^{-6}$ BT/cm*cp. Кривые 1, 2 соответствуют зависимостям ΔN_1 , ΔN_2 , (слева), $|\Delta N_1 - \Delta N_2|$ (справа) от изменения модельной температуры атмосферы.

Рис.3. Сравнение рассчитанных по уходящему излучению изменений содержания озона в атмосфере при увеличении его в нижних ΔN₁(♠), ΔN₂(X) и в верхних слоях ΔN₁ (●), ΔN₂(+) при Qз=290 К с модельными ΔNм (▲).

проведены также с парами Расчёты эталонных мощностей *S*э_н (1002-1003см⁻¹), $(1020-1021 \text{ cm}^{-1}),$ полученных Sэв суммированием уходящего излучения Земли при температуре 290 К и излучения всех 100 метровых слоёв модели атмосферы, но с добавками 1% озона поочерёдно только в нижних или верхних слоях. Нижние слои от поверхности Земли до 17 км., 21 км., 25 км., 33 км., 40 км., а верхние слои 34-40 км., 28-40 км., 22-40 км., 16-40 км. Слои выбраны в порядке увеличения добавки молекул озона.

Анализ зависимости аналогичных расчётов добавки содержания озона ΔN_1 , ΔN_2 от изменения озона только в некоторых выше приведённых слоях модели атмосферы ΔN_M с неизменными калибровочными коэффициентами C_1 , C_2 показал, что разность ΔN_1 - ΔN_2 в этих случаях минимальна также при совпадении температуры подстилающей поверхности в модельном и эталонном

уходящем излучении, но значения ΔN_1 , ΔN_2 значительно отличаются от ΔN_M .

На рисунке 3 показано сравнение рассчитанных по уходящему излучению ΔN_1 , ΔN_2 при увеличении озона в нижних или в верхних слоях модели на ΔN_M при Q3=290 К. При отклонении содержания озона менее одного процента в рассматриваемой модели атмосферы относительная ошибка определение общего содержания озона может достигать 0,5%.

Эффективная температура подстилающей поверхности Земли, соответствующая исследуемому уходящему излучению Земли, наблюдается при минимальной разности расчётных значений изменений содержания озона в атмосфере по уходящему излучению одновременно в двух спектральных участках с противоположной зависимостью коэффициента поглощения излучения исследуемого газа от изменения его температуры.

Корректировка содержания озона в атмосфере

Перераспределение озона внутри атмосферы приводит к изменению мощности уходящего излучения, соответственно, меняются калибровочные коэффициенты. Это приводит к значительной погрешности рассчитанного содержания озона в атмосфере даже при известной эффективной температуры подстилающей поверхности Земли (рис. 3).

Рассмотрены сценарии изменения коэффициентов калибровки при изменении содержания озона последовательно в нижних слоях атмосферы и соответственно в верхних слоях.

Взаимосвязь калибровочных коэффициентов в рассматриваемых спектральных диапазонах при изменении содержания озона последовательно в нижних слоях атмосферы более надежно описываются полиномом 6 степени с 4 знаками после запятой со средней ошибкой аппроксимации ~ 0.0305 %: (C₂)_H =-a₁*C₁⁶+a₂*C₁⁵-a₃*C₁⁴+a₄*C₁³-a₅*C₁²+a₆*C₁+a₇. Изменения озона в верхних слоях описываются полиномом 6 степени с 4 знаками после

Изменения озона в верхних слоях описываются полиномом 6 степени с 4 знаками после запятой со средней ошибкой аппроксимации ~ 0,0455 %: $(C_2)_B = a_{1*} C_1^{\ 6} - a_{2*} C_1^{\ 5} + a_{3*} C_1^{\ 4} - a_{4*} C_1^{\ 3} + a_{5*} C_1^{\ 2} - a_{6*} C_1 + a_7 [8].$

Проведен расчёт изменения содержания озона в атмосфере $\Delta N_a \text{ см}^{-2}$ от модельного при минимуме разности отклонения расчётных значений изменения содержания озона в атмосфере по уходящему излучению Земли S_{M1} , S_{M2} в спектральных участках 1002-1003 см⁻¹ и 1020-1021 см⁻¹ с использованием аппроксимационной взаимосвязи калибровочных коэффициентов. Модельные ΔN_M и расчётные ΔN_a изменения содержания озона в атмосфере при его увеличении в нижних и верхних слоях атмосферы приведены на рисунке 4.

Рис.4. Модельные и расчётные изменения содержания озона в воздухе при его увеличении в нижних (а) и в верхних (б) слоях атмосферы.

Использование взаимосвязи калибровочных коэффициентов в рассматриваемых спектральных диапазонах приводит к повышению точности контроля состояния озонового слоя в атмосфере. Относительная погрешность определения общего содержания озона в модельных расчётах не превышает 0,025%

Проведённые исследования показывают возможность контролировать изменения озонового слоя атмосферы по данным измерений уходящего инфракрасного излучения из атмосферы спутниковыми радиометрами с уточнением эффективной температуры подстилающей поверхности.

Заключение

Выбраны участки спектра 1002-1003 см⁻¹, 1020-1021 см⁻¹ с противоположной зависимостью коэффициента поглощения излучения от изменения температуры газа для контроля озонового слоя Земли по уходящему излучению атмосферы. В спектральном интервале 990-1025 см⁻¹ наблюдается минимальное присутствие линий поглощения не измеряемых атмосферных газов.

Минимальное значение разности изменении содержания озона в атмосфере, рассчитанное по уходящему излучению Земли в каждом из двух спектральных участков при вариации температуры подстилающей поверхности и температуры эффективного слоя атмосферы, соответствует параметрам исследуемой атмосферы.

Результаты исследования могут быть использованы в качестве методики для обработки спектров уходящего излучения в полосах поглощения других парниковых газов.

Работа выполнена в рамках государственного задания ИОА СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ромашкина К.И.* Усовершенствованная методика градуировки озонометра М-83 по свету от зенита неба // Тр.ГГО. 1984, вып. 472. С. 74-82.
- 2. Тимофеев Ю. М, Неробелов Г. М., Поляков А. В., Виролайнен Я. А. Спутниковый мониторинг озоносферы // Метеорология и гидрология. 2021. №12. С. 71-79.
- 3. Успенский А.Б., Троценко А.Н., Рублёв А.Н. Проблемы и перспективы анализа и использования данных спутниковых ИК-зондировщиков высокого спектрального разрешения.// Исследование Земли из космоса. 2005. № 5. С. 18-33
- 4. Фалалеева В.А., Фомин Б.А. Спектроскопические проблемы в прямых задачах спутникового зондирования атмосферы и пути их преодоления.// Оптика атмосферы и океана. 2016. Т.29, № 9. С. 733-738.
- 5. Шишигин С.А. Метод корреляционной спектроскопии для анализа спектра уходящего излучения атмосферы // Оптика атмосферы и океана. 2017. Т.30, №2. С. 134–138.
- 6. Виролайнен Я.А., Поляков А.В. Учёт рассеяния излучения в наземных газо-корреляционных измерениях общего содержания метана. // Исследование Земли из космоса. 2004. № 4. С. 1-7.
- 7. Шишигин С.А. Погрешность определения эффективной температуры слоев воздуха и подстилающей поверхности Земли в используемой модели атмосферы при расчетах содержания метана. // Оптика атмосферы и океана. 2021. Т. 34. № 09. С. 711–715.
- 8. URL: planetcalc.ru/8731 (дата обращения: 20. 03.2022)